This course will get you started in building your FIRST artificial neural network using deep learning techniques. Following my previous course on logistic regression, we take this basic building block, and build full-on non-linear neural networks right out of the gate using Python and Numpy. All the materials for this course are FREE.
We extend the previous binary classification model to multiple classes using the softmax function, and we derive the very important training method called “backpropagation” using first principles. I show you how to code backpropagation in Numpy, first “the slow way”, and then “the fast way” using Numpy features.
Next, we implement a neural network using Google’s new TensorFlow library.
You should take this course if you are interested in starting your journey toward becoming a master at deep learning, or if you are interested in machine learning and data science in general. We go beyond basic models like logistic regression and linear regression and I show you something that automatically learns features.
This course provides you with many practical examples so that you can really see how deep learning can be used on anything. Throughout the course, we’ll do a course project, which will show you how to predict user actions on a website given user data like whether or not that user is on a mobile device, the number of products they viewed, how long they stayed on your site, whether or not they are a returning visitor, and what time of day they visited.
Another project at the end of the course shows you how you can use deep learning for facial expression recognition. Imagine being able to predict someone’s emotions just based on a picture!
After getting your feet wet with the fundamentals, I provide a brief overview of some of the newest developments in neural networks – slightly modified architectures and what they are used for.
NOTE:
If you already know about softmax and backpropagation, and you want to skip over the theory and speed things up using more advanced techniques along with GPU-optimization, check out my follow-up course on this topic, Data Science: Practical Deep Learning Concepts in Theano and TensorFlow.
I have other courses that cover more advanced topics, such as Convolutional Neural Networks, Restricted Boltzmann Machines, Autoencoders, and more! But you want to be very comfortable with the material in this course before moving on to more advanced subjects.
This course focuses on “how to build and understand“, not just “how to use”. Anyone can learn to use an API in 15 minutes after reading some documentation. It’s not about “remembering facts”, it’s about “seeing for yourself” via experimentation. It will teach you how to visualize what’s happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.
Suggested Prerequisites:
calculus (taking derivatives)
matrix arithmetic
probability
Python coding: if/else, loops, lists, dicts, sets
Numpy coding: matrix and vector operations, loading a CSV file
Be familiar with basic linear models such as linear regression and logistic regression
TIPS (for getting through the course):
Watch it at 2x.
Take handwritten notes. This will drastically increase your ability to retain the information.
Write down the equations. If you don’t, I guarantee it will just look like gibberish.
Ask lots of questions on the discussion board. The more the better!
Realize that most exercises will take you days or weeks to complete.
Write code yourself, don’t just sit there and look at my code.
WHAT ORDER SHOULD I TAKE YOUR COURSES IN?:
Check out the lecture “What order should I take your courses in?” (available in the Appendix of any of my courses, including the free Numpy course)
Overview of the course and prerequisites.
An almost purely qualitative description of neural networks.
What's the function we use to classify more than 2 things?
How do we code the softmax in Python?
Let's extend softmax and code the entire calculation from input to output.
How to code bacpropagation in Python using numpy operations vs. slow for loops.
What are the donut and XOR problems again?
We look again at the XOR and donut problem from logistic regression. The features are now learned automatically.
sigmoid, tanh, relu along with their derivatives
Tips on choosing learning rate, regularization penalty, number of hidden units, and number of hidden layers.
A look at Google's new TensorFlow library.